The effect of longitudinal fluctuation in event-by-event (3+1)Dhydrodynamics

LongGang Pang

With XinNian Wang and Qun Wang LBNL & USTC arXiv:1205.5019

June 7, 2012 @ HENPIC EVO Meeting

- Contents
 - Why fluctuation initial condition and E-By-E hydrodynamics?
 - Introduction to 3+1D hydrodynamic simulation
 - AMPT initial condition
 - Spectra and elliptic flow at RHIC and LHC
 - Effect of transverse and longitudinal fluctuation(LF)
 - ullet The relationship between di-hadron correlation and v_n
 - SUMMARY

Collision geometry and harmonic flow in relativistic heavy ion collisions.

Smooth and fluctuating initial condition

$$\frac{dN}{dY p_T dp_T d\phi} = \frac{g_s}{(2\pi)^3} \int_{\Sigma} p^{\mu} d\Sigma_{\mu} \frac{1}{\exp((p \cdot u - \mu)/T_{FO}) \pm 1}$$

$$= N_0 (1 + 2 \sum_{n=0}^{\infty} v_n \cos(n(\phi - \Psi_n)))$$
(2)

June 7, 2012 @ HENPIC EVO Meeting 3,

Decomposition of the initial collision geometry.

- The transverse distribution in fluc ini can be decomposed in different shapes.
- v_2 and v_3 have linear response to initial geometry eccentricity ε_2 and ε_3 .
- High order harmonic flows do not. Zhi Qiu, U. Heinz, Phys.Rev. C84 (2011) 024911
- For non central collisions, v_4 , v_5 may also depend on ε_2^2 , $\varepsilon_2\varepsilon_3$. Phys.Rev. C85 (2012) 024908

The recent experimental data for v_n and di-hadron correlation

- Higher order harmonic flows and di-hadron correlation can only be studied with fluctuating initial condition in E-By-E simulation.
- Fluctuating initial condition has important effect on p_T spectra and v_2 .(shown latter)

Hydrodynamics for Relativistic Heavy Ion Collisions

Main task: solve e, P, n, v_x, v_y, v_z from the following equations.

$$\partial_{\mu}T^{\mu\nu} = 0 \tag{3}$$

$$\partial_{\mu}J^{\mu} = 0 \tag{4}$$

$$P = EOS(e, n) (5)$$

where:

$$T^{\mu\nu} = (e+P)u^{\mu}u^{\nu} - Pg^{\mu\nu}$$

•
$$J^{\mu} = n \ u^{\mu}$$
.

•
$$u^{\mu}$$
: four velocity which obeys $u_{\mu}u^{\mu}=1$.

Hydrodynamics for Relativistic Heavy Ion Collisions III

We use (τ, x, y, η_s) coordinates,

- Proper time $\tau = \sqrt{t^2 z^2}$.
- Spacial rapidity $\eta_s = \frac{1}{2} \ln(\frac{t+z}{t-z})$.
- Rapidity $Y = \frac{1}{2} \ln(\frac{E+P_z}{E-P_z})$.
- Pseudo-rapidity $\eta = \frac{1}{2} \ln(\frac{P+P_z}{P-P_z})$.

Equation Of State

- EOSI: Massless ideal partons gas p = e/3.
- EOSQ: First order phase transition between QGP and HRG
- EOSL: Smoothed crossover between lattice QCD Eos and HRG
- We used EOSL parameterized in Nucl.Phys. A837 (2010) 26-53

Frz out hypersurface calculation:

Kataja-Ruuskanen's method

Projection method

- $S=\Delta s_0 s_1 s_2 + \Delta s_2 s_3 s_6$
- Kataja-Ruuskanen's method is used in Azhydro0p2 and Bjorn's 3 + 1D hydro.
- Our projection method is much easier to extend to n + 1D.
- Both methods save a lot of cpu hours in E-b-E calculation.

$$T^{\mu\nu} = K \sum_{i} \frac{p_{i}^{\mu} p_{i}^{\nu}}{p_{i}^{\tau}} f \tag{6}$$

$$f = \frac{1}{\tau_0 \sqrt{2\pi\sigma_{\eta_s}^2} 2\pi\sigma_r^2} \exp\left(-\frac{(x-x_i)^2 + (y-y_i)^2}{2\sigma_r^2} - \frac{(\eta_s - \eta_{si})^2}{2\sigma_{\eta_s}^2}\right)$$
(7)

- We assumed local thermalization and solve e and u^{μ} from $T^{\mu\nu}$.
- We get K and τ_0 from fitting the multiplicity of charged hadrons at central collisions.
- K=1.45 and $\tau_0=0.4$ fm for RHIC
- \bullet K=1.6 and $au_0=0.2$ fm for LHC
- Longitudinal fluctuation and initial flow velocity are introduced in our simulation.

AMPT: Energy density and flow velocity fluctuation

- Fragmentation and melting of strings.
- Mini-jets from binary collisions.
- Parton cascade.

Other fluctuation initial conditions

- MC Glauber and MC KLN: transverse energy density fluctuation
- URQMD ini: energy density and flow velocity fluctuation from hadrons.
- NeXSPheRIO: energy density and flow velocity fluctuation
- EPOS: energy density and flow velocity fluctuation

Transverse distribution

MC Glauber initial condition

$$e(x, y, \eta_s) = H(\eta_s) * K * (\alpha n_{bc} + (1 - \alpha) n_{wn}).$$

AMPT initial condition

Get $T^{\mu
u}$ from cascaded partons 4 momentum and spacial distribution.

Longitudinal distribution

Tube like longitudinal distribution

AMPT partons η_s distribution

What do we want to see with AMPT ini condition?

- The effect of longitudinal fluctuation on transverse evolution.
- 2+1D (Bjorken scaling) .vs. 3+1D (Tube, Fluc)
- Flow velocity fluctuation.
- Two particle correlation.

Hydrodynamic evolution for AMPT initial condition I

Transverse plane Youtube Link

Hydrodynamic evolution for AMPT initial condition II

Reaction plane Youtube Link

(RHIC) Centrality dependence of multiplicity and p_T spectra

- 3+1D viscous hydro will give a wider shoulder at central rapidity. Bjorn, Phys. Rev. C 85, 024901 (2012) Piotr, Phys. Rev. C 85, 034901 (2012)
- We did not consider net baryon density at large rapidity yet.

- We used Chemical Equilibrated EOS(s95p-v1) and underestimated proton production.
- Partial Chemical Equilibrated EOS will fix this at RHIC energy.
- PCE EOS fails to describe LHC results.

(RHIC) Calculate v_2 from Participant Plane(PP) and Event Plane(EP)

$$v_2 = \frac{\int \cos(2(\phi - \Psi_n)) \frac{dN}{dY p_T dp_T d\phi} d\phi}{\int \frac{dN}{dY p_T dp_T d\phi} d\phi}$$
(8)

- PP: $\Psi_n = \frac{1}{n} (\arctan \frac{\langle r^n \sin(n\phi_r) \rangle}{\langle r^n \cos(n\phi_r) \rangle} + \pi)$
- EP: $\Psi_n = \frac{1}{n} \arctan \frac{\langle p_T \sin(n\phi_p) \rangle}{\langle n_T \cos(n\phi_p) \rangle}$
- These two definitions should give out similar results.
- We use the continues particle spectra to calculate EP, no resolution problem.

June 7, 2012 @ HENPIC EVO Meeting 20 /

(LHC) The elliptic flow for identified particles.

(LHC) The elliptic flow for identified particles.

FIGURE 5. (Color online) Same preliminary data from ALICE [20, 21] as in Fig. 4, but now compared with VISHNU calculations with $(\eta/s)_{OGP} = 0.2$, using the same MC-KLN initial conditions as in Fig. 3. Shown is the eccentricity-scaled elliptic flow, i.e. $v_2\{2\}/\varepsilon_x\{2\}$ for the experimental data and $\langle v_2 \rangle/\langle \varepsilon_x \rangle$ for the theoretical curves.

- Figure from AIP Conf.Proc. 1441 (2012) 766-770 by Ulrich W. Heinz, Chun Shen and Huichao Song.
- Pure hydro has the proton v_2 puzzle for central collisions.
- Viscous hydro + URQMD may give a better fit for proton v_2 at central collisions.

Fluctuation effect

Fast isotropic expansion of each hot spot at early stage in transverse plane

Harder p_T spectra and smaller v_2 at large p_T .

- R. Chatterjee, H. Holopainen, T. Renk, and K. J. Eskola Phys.Rev. C83 (2011) 054908
- B. Schenke, S. Jeon, C. Gale, Phys. Rev. Lett. 106, 042301
- Z. Qiu and U. W. Heinz, Phys. Rev. C 84, 024911
- Also seen in our AMPT initial condition

Effect of longitudinal fluctuation

- Non zero pressure gradient along η_s at central rapidity.
- Faster expansion along η_s direction for each hot spot.
- Suppress transverse expansion and v_2 .

Effect of initial flow on di-hadron correlation

(AuAu 200 GeV/n Centrality 10 - 20%)

$$C_{12} = \langle N_1^t N_2^a \rangle_{same} / \langle N_1^t N_2^a \rangle_{mixed} \tag{9}$$

• Without initial flow, the di-hadron correlation is much flatter.

The effect of longitudinal fluctuation on di-hadron correlation

(AuAu 200 GeV/n Centrality 30 - 40%)

• Without LF, di-hadron correlation is constant along rapidity direction

The decomposition of di-hadron correlation for AMPT+3DHydro simulation I

$$C12(\Delta\phi) = b_1 \cos(\Delta\phi) + b_2(1.0 + v_{n,t}^{EP} v_{n,a}^{EP} \cos(n\Delta\phi))$$
 (10)

- Di-hadron correlation at large $\Delta \eta$ can be decomposed in v_n .
- \bullet Since initial flow and LF is introduced in AMPT initial condition, short range correlation can't be decomposed in $v_n.$
- AMPT initial condition gives a wide near side peak(which must be studied further)

June 7, 2012 @ HENPIC EVO Meetin

The decomposition of di-hadron correlation for AMPT+3DHydro simulation II

 For different centralities, the weight of harmonic flow will be different, so as the away side structure.

SHMMARY

SUMMARY

- We studied the E-by-E hydrodynamic simulation with AMPT initial condition.
- The E-by-E simulation gives good agreement with experiment data for spectra and elliptic flow.
- Fluctuation has important effect on p_T spectra and v_2 .
 - TF: Fast isotropic expansion of each hotspot in transverse plane at early stage.
 - LF: Bigger longitudinal pressure gradient and expansion rate.
- LF and initial flow introduced by AMPT have important effect on two particle correlation.

Thanks!

SUMMARY

Backup

(RHIC) Identified particles' elliptic flow

(LHC) Centrality dependence of multiplicity and p_T spectra.

Event plane selection in event by event hydrodynamic simulation

- Rapidity range selection for EP doesn't matter for without LF
- With LF, EP at large rapidity will be smaller and closer to PP method.

